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A recent ly  p roposed  eva lua t ion  o f  irreversible en t ropy  changes  wi th  the  help 
of  mode l  s tochas t ic  processes  is appl ied to the  demagne t i za t i on  o f  an  
isolated squa re  l s ing  lattice. A s tochas t ic  process  (executed wi th  a compu te r )  
causes  an  initially magne t i zed  latt ice to u n d e r g o  an  ad iaba t ic  demagne t i za -  
t ion,  with  no  externa l  work,  by fl ipping the  sp in ' s  or ien ta t ion .  The  cond i t ion  
in te rac t ion  energy E = cons t  is m a i n t a i n e d  by a pa i r ing  o f  flips for  which  
8E cancel  out  mutua l ly .  The  demagne t i za t i on  ra te  is control led  by let t ing a 
p a r a m e t e r  X s (which f avour s  one  or ien ta t ion  over  the  other)  decrease  toward  
zero at the  desired ra te ;  the  ra te  r anges  f r o m  an  effectively reversible to the  
m o s t  i rreversible demagne t i za t ion .  T he  externa l  en t ropy  change  is eva lua ted  
f r o m  the  p rocess  discrimination, related to the  t rans i t ion  probabi l i t ies  o f  the  
actual  s teps.  T o g e t h e r  wi th  the  s ta te  en t ropy  of  the  lattice, this  enables  one  
to find the  ne t  en t ropy  p roduc t i on  charac te r iz ing  an  irreversible process .  
The  eva lua t ion  is achieved wi thou t  recourse  to t h e r m o d y n a m i c  equivalents .  
A t h e r m o d y n a m i c  descr ipt ion,  in t e rms  of  an  equiva lent  t e m p e r a t u r e  for  the  
ad iaba t ic  process ,  is p resen ted  separate ly .  
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s imulat ion;  entropy product ion;  discr iminat ion; Ising lattice ; adiabatic 
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1 .  I N T R O D U C T I O N  

A recent article ~1~ discussed the entropy of model stochastic processes. Suppose 
that a nonisolated N-particle system undergoes an arbitrary variation. The 
associated entropy changes are conveniently written as <2~ 

84 = 3 & y s t -  3Soxt >/ 0 (1) 

Here 3Ssyst (or 8S) is the entropy difference between the final and initial 
states of the system, while 8Sext is the flow of entropy into the system due to 
the action of surroundings (external constraints). The net entropy production 
84 (also called internal entropy change) equals zero in a reversible variation; 
in an irreversible variation it is larger than zero. This depends on whether or 
not the system's response 3S matches the action of the constraints 3Sex~. The 
evaluation of 8 4 is of considerable interest, both as an indicator of irreversi- 
bility and in connection with the principle ascribing pathways of minimum 
entropy production to incompletely specified processes. 

Suppose further that our variation is described with the help of a stepwise 
stochastic process. At time s of the process the configurations (microstates) 
of the system transform one into another in a sequence of individual particle 
transitions s, s + 1, s + 2,..., s + N. Can 8 4 be evaluated for this sequence of 
steps ? Statistical mechanics relates the entropy of a system to the probability 
distribution of its configurations, or, specifically, to the average value of 
- l o g  p~, p~ being the probability of the ith configuration. The probabilities p~ 
are defined for any instant of a stochastic process and hence (at least in 
principle) 8S can be evaluated from 

3S = - ~( logp)  = ( logp)s  - (logp)~+N (2) 

In order to evaluate 3Sext we turn to the sequence of the actual transitions. 
Thus f~,~+l is the probability of the transition which has occurred at step s 
of the process, while f~+ 1.~ is the probability of the reverse transition. Their 
ratio measures the degree to which the former is favored over the latter. To 
make the quantity extensive in N, the total discrimination of a particular 
execution of the process is defined by 

s + N  

3D = ~ log(f~,,~,+~/f~,+~.s,) (3) 
8 ~ S  

The discrimination expresses the stochastic effort with which the process is 
driven. By contrast, - 3( logp)  = 8S represents the corresponding response 
in the form of a changing probability distribution. This suggests the identifica- 
tion of 8D, or, better, of its average over repeated executions of the process, 
with the entropy change due to the action of constraints. Thus the basic 
postulate of Ref. 1 is 

- 3 S ~ t  = ( ~ D )  (4)  

- (3D)ob . . . . .  b~ for large N (4') 
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Equations (1), (2), and (4) combined enable one to express ~ for a stochastic 
process 

~ = - ~ ( l o g p )  + ( ~ D )  (5) 

The following evidence was presented in Ref. 1 to support the postulate. 
(1) An examination of the dynamics of a stochastic process for both equi- 
librium and nonequilibrium shows that (3D)  is, respectively, equal to, and 
larger than, ~(log p).  This agrees with 3r /> 0 as required by the second law of 
thermodynamics. (2) This agreement has been corroborated by actual com- 
puter experiments, which simulated the cooling of a square Ising lattice in 
contact with a reservoir. Two manners of cooling were considered: First, 
individual spins exchange heat with the reservoir, and second, the lattice cools 
as a bulk system, both through a heat exchange with the reservoir and by an 
internal redistribution of the absorbed heat. A "Metropolis"-l ike (3)2 Monte 
Carlo process describes the first manner of cooling; an approximate descrip- 
tion of the second was introduced in Ref. 1 and dubbed the "cooperative 
model." Both models were executed with the help of a computer. The total 
entropy production ~ calculated with Eq. (5) was invariably positive and 
decreased to zero as the duration of the cooling increased. Another reasonable 
result was that - 4' could be decreased by improving the internal equilibration 
mechanism of the cooperative model. (3) Whenever - 8Sext can be expressed 
in terms of thermodynamic variables, 3 (D)  should automatically reduce to 
that expression. This was shown to be trivially true for the Metropolis model, 
when the transitions at each step obey 

3D = log(f~,s+l/f~+l,s) = -/3ext 8Es,~+l (6) 

/3ext being the reciprocal temperature of the reservoir and 3Es,~+ 1 the energy 
change for the transition. However, to an exchange of the heat ~ Q = 3E~,~ + 1, 
there corresponds 

- 3Sext = -/3o~t 3 Q = -/3~x t ~E~,~ +1 (7) 

A more indirect argument, relying on a concept of an equivalent temperature 
of the joint external and internal heat exchange, showed this to be still true for 
the cooperative model. In that case, however, a physically meaningful 
temperature can be defined only for configurational transitions which involve 
a large number of stochastic steps, viz. for large N. 

The last point of the foregoing discussion, concerning the equivalence to 
thermodynamic expressions, makes one wonder whether the attempt to 
introduce discrimination as a separate concept is not rather superfluous. Why 
not express the ratiosf~,~ + 1/f~ + 1,~ by their equivalent thermodynamic variables 
and thence calculate ~S.~t for a process with the help of standard irreversible 

See Ref. 4 for application to the Ising lattice. 
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thermodynamics 9. Our answer is that the discrimination remains evaluable 
for a process described in a consistently probabilistic manner (by transition 
probabilities), even when the definition of equivalent thermodynamic variables 
becomes artificial or even doubtful. The present article tries to substantiate 
this claim by presenting a calculation of the discrimination and of ~b for a 
stochastic process describing a demagnetization with no work, which proceeds 
irreversibly and adiabatically, so that the temperature is ill defined. (In other 
words, we try, following Brillouin, to "exorcise Maxwell's Demon ''~5> by 
evaluating the ne t  entropy production for a process, preferring, however, to 
perform the requisite rites in a consistently probabilistic language.) 

2. THE M O D E L  STOCHASTIC  PROCESS A N D  ITS 
INTERPRETATION 

Consider a thermally isolated square Ising lattice, consisting of N spins. 
The lattice is initially magnetized and is allowed to demagnetize during the 
process, either abruptly or in a gradually controlled manner; an example of a 
subsequent remagnetization is considered as well. The initially magnetized 
lattice is constructed as follows. In a succession of steps s = - N  + 1, 
- N  + 2, - N  + 3,..., 0, the N spins are accorded a magnetic orientation 
es = 1 or - 1. The probabilities at each step are 

f~ = exp(X%s)/2 cosh(X~ (8) 

Here the adjustable parameter X ~ > 0 achieves the net magnetization of the 
lattice by making the probability for crs = 1 larger than the probability for 
~s = - 1 ,  viz. f o ( + )  > f o ( _ ) .  Thus the execution (with the aid of a com- 
puter) of a particular N-step process gives the following net magnetization 
(per spin): 

0 

M ~  ~ ~ s ~ f o ( + ) _ f o ( _ )  = t a n h ( X  o) (9) 
s= --N+I 

where the second, approximate equality neglects fluctuations for sufficiently 
large N. The internal energy per spin due to the interaction of each spin with 
its four lattice neighbors is 

0 4 

- E  = (2N) -1 ~ ~ ~,~, ~_ 2[ f0(+)  _ f o ( _ ) ] 2  
S~ --g+l S'=I 

= 2(tanh X~ 2 (10) 

Another important quantity is calculated from the product of the proba- 
bilities f0(~s) for the sequence of the actual steps, s = - N  + 1 to s = 0. 
This gives the probability p0 of a particular stochastic construction, or 
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equivalently, of  an initial lattice configuration. With neglect o f  fluctuations 
for  large N, log p0 can be identified with the average value. This enables one 
to calculate the entropy of  the probabili ty distribution initially accorded to 
the system's configurations [see Eq. (2) or  elsewhereC6q, 

0 

logf~ ~- ( log p~ = - S  O for large N (11) 
s = - N + I  

After completion o f  the initial construct ion the lattice is allowed to lose 
its initial magnetization without  performing work and adiabatically, viz. 
while keeping E constant.  The appropriate  stochastic process proceeds in a 
sequence o f  steps s = 1, 2, 3 ..... ~o ( >  N). At  each step two nonadjacent  spins 
of  equal orientation are flipped jointly, so that 3M~ = 4 or - 4 .  In  order  to 
ensure that  3Es = 0, the joint  flips must  belong to one of  the following six 
groups of  allowed transitions: 

(a) Both flipped spins have ~s = - 1 ,  so that  3Ms = 4 and the four  
neighbors to the first and the second spins are, respectively, 4 ( + )  and 
4(-): 

+ 
+ - + and 

+ 

(b) Same as (a) but  the flipped spins have cr~ = 1, so that  8M, = - 4 :  

+ 
+ + + and - + - 

+ 

(c) Both flipped spins have ~s = - 1 and the four  neighbors to the first 
and to the second spins are, respectively, 3 ( + )  + 1 ( - )  and 1 (+)  + 
3(-): 

- -  + 

+ -- + and 
+ 

(d) Same as (c) but 8M~ = - 4 :  

- + 

+ + + and - + - 
+ 

(e) Both flipped spins have as = - 1 and the four  neighbors to the first 
and to the second spins alike are 2 ( + )  + 2 ( - ) :  

- - + and - - + 
+ + 
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(f) Same as (e) but 3M. = - 4 :  

- + + a n d  - + + 
+ + 

In practice the process is executed as follows. All lattice spins are 
currently classified according to their four neighbors, which fixes their 
adherence to one of the above groups of candidate joint flips. The actual pair 
flipped at step s is determined with the help of three Monte Carlo lotteries. 
First lottery determines the group; the second and the third lotteries determine, 
by random choice, which of the first and second candidate spins belonging to 
the group are actually flipped (whereupon all groups are updated). In the 
first lottery a weight factor FS(i) is accorded to each of the groups i = 1.2 ..... 6. 
The factor is proportional to the numbers of the first and second candidate 
spins, n~ s x m~ s, and depends on whether 3M~ is equal to 4 or to - 4 .  Thus 

r~(i)  = (f2 ~)- ln~m~ exp(X s 3MJ2) (12) 

f2 ~ being the normalization coefficient summing the weight factors of the six 
groups at time s. The adjustable parameter X ~ ~< X ~ controls the decrease of 
the magnetization with increasing s. X ~= X~ would preserve the initial 
magnetization [see Eq. (12) versus Eq. (8) applied to 2 x ~]. X ~ = 0 corre- 
sponds to the most abrupt demagnetization. A controlled demagnetization is 
obtained by allowing X s to decrease gradually from the initial value X ~ to 
the ultimate value X ~ = 0. 

The actual execution of a model process enables one to measure the net 
lattice magnetization M and the discrimination as functions of the time. The 
calculation of the discrimination for step s is as follows. The first lottery 
proceeds with the probability F~(i), the second and third lotteries (picking the 
actual spins out of the group) proceed with the probabilities 1/n, ~ and 1/m, ~, 
respectively. The transition probability of an s step therefore is 

f~,~+l = F(i) / (n~m~ ~) = ( f~) - I  exp(X ~ 3MJ2) (13) 

where 3M~ for step s is denoted by 3M~. The discrimination of N steps of the 
process therefore is [cf. Eq. (3)] 

s + N  

3D = ~ X "' ~M~, ~ (3D)  for large N (14) 
S ' = 8  

Suppose the decrease of X ~ with s is gradual enough to make the process 
effectively reversible, 3q~ _ 0. In that case [cf. Eqs. (2) a n d  (5)] 

3D ~ 3( logp)  = - ~S (reversible variation) (15) 
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This enables us to calculate the entropy of the system at the end of the process 
s = 1, 2, 3,..., ~o (>  N) from 

S = S o + A S -  S O - D (reversible variation) (16) 

with S O and D evaluated with the help of Eqs. (11) and (14), respectively. 
Having found S for the reversible process enables one to compute the entropy 
production [Eq. (5)] for an irreversible process which converges upon the 
same terminal state at ~o 

= S - S O + D (17) 

But at the end of the process X ~ = 0 and the exchange of spin orientation is 
precisely like that for an Ising lattice at equilibrium, with the (invariant) 
lattice energy known from Eq. (10). This serves to fix the equilibrium recip- 
rocal temperature fleq and the corresponding S(fleq) with the help of Onsager's 
theory? This theoretical S(fl, xd can be compared to the value found with the 
help of Eq. (16). 

Can the results be related to thermodynamic quantities, before the process 
converges toward X ~ = 0 ? A well-known approximation (at treats a reversible 
"essentially" adiabatic process as if proceeding in thermal contact with 
surroundings at flext. Accordingly, our magnetizing parameter X ~ can be 
interpreted as a Boltzmann exponential coefficient due to a magnetic field H 
acting on a system at/3~xt 

X ~ = fi~xtH (18) 

so that Eqs. (13) and (18) combined reproduce the detailed balance equation 
for two configurations differing by the energy - H  3M~ 

f~,8 + 1/f~ + 1,s = exp(flextH 3M~) (19) 

The interpretation of X ~ as a product of flext and H, and the observation that 
at equilibrium the lattice (of constant volume) is described by two of the three 
variables E, fiext and H, jointly imply that the instantaneous thermodynamic 
state of the system is fixed by stipulating given X s, constant E, and an almost 
reversible variation. Yet the actual decomposition of X 8 into flext and H 
cannot be achieved with the help of Onsager's theory, since this does not hold 
for a nonzero magnetic field. However, fiext can be evaluated with the help of 
an internally measured reciprocal temperature flint in the following way. Take 

a Reviewed, e.g., in Ref. 7. 
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a spin together with its four neighbors j = 1, 2, 3, and 4, denoting by q the 
sum of the neighbors' orientations 

4 

q = ~ % (20) 
j = l  

Since the orientation of the central spin may be either a or - a ,  a pair of 
conjugate spin states l and l' is defined by 

l+--~(q,a) and l'~--~(q,-~r) (21) 

At any time all spins belong to either one of the five distinct conjugated l, l '  
pairs, depending on whether q = 4, 2, 0, - 2 ,  or - 4 .  Let mz and m~, denote 
the number of spins which belong to l and l', respectively, whilef.z, and f ,  z 
are the corresponding transition probabilities. At equilibrium 

mz/m,, = f,.z/f,~, (22) 

If  the detailed balance of the two states is supposed to be instantaneously 
governed by the magnetizing parameter X ~ and by a reciprocal temperature 
/31nt, then 

fe.,If,,, = exp( X~ 3Ms,., - fl,ne 3E,,.z) (23) 

Equations (22) and (23), together with 3M~,,~ = 22 and 3E~,z = -2aq,  give 

fl,.t = (2aq)- '  log(mdm,,) - q - ' X  ~ =/3,,t(/, l') (24) 

in the absence of an internal equilibrium the five conjugated pairs may yield 
differing values of/3int(/, l'), which seems to invalidate the thermodynamical 
significance of this quantity. But for a reversible process, which proceeds at 
equilibrium, 

3i.t(l, I') = 3i,t for all 1, l '  (25) 

In this case/3,,t measures the equivalent surroundings' temperature for a 
reversible adiabatic process, which was introduced in Eq. (18), 

fiat(reversible) = 3ext (26) 

Summing up, Eqs. (18) and (24)-(26) combined permit us to relate X ~ (at 
given E) to the equilibrium values of 3ext and H, separately. One may venture 
that such values of/3ext(X ~, E), computed from the reversible process, can be 
still derived from processes which are moderately irreversible. Although 
Eqs. (25)-(26) no longer hold, one would say that an irreversible process, at 
the same X ~ and E, relaxes toward /3o~t(X ~, E) under the action of H = 
X~/[3oxt(X ~, E). (A process which converges upon an equilibrium distribution 
corresponding to fl.xt and H does so with transition probabilities obeying 
Eq. (19), in complete equivalence to the Metropolis method. ~3'~ In view of 
the tenuous nature of such remarks, it is stressed that the discussion of 
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Eqs. (18)-(19) and of Eqs. (22)-(26) relates to an attempted formulation of 
the thermodynamic equivalents which may, or may not, be valid. Our proba- 
bilistic discussion of  the stochastic process is summed up by Eqs. (14)-(17) 
and it will be noted that it is self-contained, requiring no recourse to thermo- 
dynamic equivalents. 

3. C O M P U T E R  RESULTS 

The computer experiments describe the demagnetization of a square 
Ising lattice of N = 100 x 100 and for internal energy per spin E ~ - 1.0. 
To obtain this value, the construction of  the initial lattice was carried out 
with a magnetization parameter X ~ = 0.881 [see the last equality of Eq. (10)]. 
With a particular sequence of random numbers this gave a starting lattice of 
E = -0.995,  initial magnetization M ~ = 0.704, and initial entropy S O = 
0.419 [cf. Eqs. (9)-(11)]. The lattice was allowed to demagnetize through the 
double-flip exchanges 2 (+ )  ~- 2 ( - ) ,  while E was kept constant [as explained 
in the paragraph that follows Eq. (11)]. A very gradual demagnetization was 
achieved by letting the magnetization parameter X ~ decrease linearly with the 
process time s (in jumps of N steps for the sake of convenience) from the 
initial X s = X ~ to X s = 0 after s = 146Ndouble-flips. The lattice magnetiza- 
tion M, the process discrimination D [Eqs. (14)], and the internal temperature 
/3int [Eq. (24)] were measured over the duration of s = 170N double-flips. 
The results are described in Fig. 1. The initial value of/3int is zero, corre- 
sponding to the complete lack of ordering by the initial construction. The 
subsequent free adiabatic .demagnetization induces ordering, to keep E 
constant, or, equivalently, the lattice cools as M decreases to zero. (Our 
magnetic cooling can be likened to the Joule effect for a freely expanding, 
imperfect gas; it vanishes likewise in the absence of strong particle interactions. 
The question of whether such a demagnetization is experimentally attainable, 
especially when the rate is controlled by X ~, is not dealt with here.) One notes 
that when X s = 0 is attained, the values of/31nt and of S o - D [Eq. (16)] 
are equal to the theoretical values of/3eq = 0.378 and Seq = 0.48, respectively 
(calculated with the help of Onsager's theory for an infinite lattice at H = 0 
and E = -0.995).  This indicates that the process has indeed proceeded in an 
essentially reversible manner. Hence the lines for/31,t, X ~, and M in Fig. 1 
describe the equilibrium interdependence o f / ~ t  = flext [Eq. (26)], X s = [3~xtH 
[Eq. (18)], and M, for an Ising lattice having E = -0.995.  It is observed that 
the decrease of M becomes increasingly steep as M = 0 is approached, which 
is expected theoretically (with a phase transition around M = 0 occurring 
when H = 0). It is also interesting to note that the entropy change due to the 
demagnetization at constant E is relatively small (AS = 0.06); viz. it does not 
make much of a difference whether a certain alignment of neighbor spins is 
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I ~ I . . . . .  i I 

0.8 

M o - 

0.6 

SO 

X 
S~D\ 

~ M  

0 :Meq 

50 I00 150 

Number of double flips/N 

Fig. 1. The reversible adiabatic demagnetization of a square Ising lattice N = I00 • 100 
of an internal energy (per spin) E = - 1 .  The magnetizing parameter X ~ decreases 
linearly from X ~ to zero over the time interval of 146N double-flips; the lattice magnetiza- 
tion M, the entropy change S O - D [Eq. (16)], and the internal reciprocal temperature 
/~mt = floxt [Eqs. (24)-(26)] are plotted versus the time. 

a r r ived  at  with the help o f  an  external  agency or by  means  o f  a spontaneous  
internal  equi l ibra t ion.  The  evalua t ion  of  f l ~  = f l ~  for  the  reversible process  
makes  possible  the compu ta t i on  o f  H f rom X s with Eq. (18). The  values of  H 
thus compu ted  and  the cor responding  values of  M f rom Fig, 1 are  p lo t ted  in 
Fig, 2; the a rea  under  the curve describes the cor responding  magnet ic  energy, 
- X  H S M .  

Figure  3 describes a fair ly ab rup t  demagnet iza t ion  in which X ~ is a l lowed 
to decrease l inear ly  toward  zero dur ing  the t ime interval  s = 10N. We note  
tha t  S O - D at the  end of  the irreversible process  is significantly smal ler  than  
Seq, due to  the nonzero  en t ropy  p roduc t ion  r = 0.015. Yet  the thermal  
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~--/3ext =0. II 

, - -Bext  =0.125 

*--,Sext = O. 15 

,--/3ext =0.18 

I ,--/3ext =0.255 ~ 
. " Bext=0.578 

-0.8 -M* -0.6 -0.4 -0.2 0 

-M 

Fig. 2. The "equivalent"  magnetic field H = X~/fle~. [Eq. (18)] versus the lattice mag- 
netization ( -  M)  for the reversible process of Fig. 1. Area under the curve describes the 
corresponding magnetic energy. 

equilibrium throughout the process is not greatly perturbed. This is indicated 
by the fact that the values of flint were found to be quite well defined [in the 
sense of Eq. (25)] and that their dependence on X s is almost the same as that 
described by the reversible line flint -- flext in Fig. 1. This lends experimental 
support to the hypothesis stated at the end of the preceding section: A 
moderately irreversible adiabatic process which at time s is specified by X ~ 
and by E, can be interpreted as relaxing in contact with surroundings at flext 
and H in accordance with Eq. (19), where fle,t is the equilibrium reciprocal 
temperature fixed by X ~ and E, while H = X~/fle~t. 
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Number of double flips/N 
Fig. 3. Same as Fig. 1, but for an irreversible demagnetization in which X s decreases 
from X 8 to zero over the interval of 10N double-flips. S O - D does not attain S~q due to 
nonzero entropy production [Eq. (17)]. 

- -  Seq 

- / ~ e q  

- Meq 

Figure 4 describes the mos t  abrup t  demagnet izat ion,  in which right f rom 
the beginning the magnet izing pa ramete r  X" is put  equal to zero ("  switched 
off") .  Since D = 0 [Eq. (14)], the entire en t ropy  of  demagnet izat ion is 
irreversibly lost and the en t ropy  product ion  [Eq. (17)] attains its m a x i m u m  
value 

r = ASaemag = 0.06 (27) 

But even for  this mos t  irreversible process the values of  ill.t, except for  the 
very first ones, were found to obey Eq. (25) to a good approx imat ion  (for 
those that  did not, /31.t was calculated as an average for  different /, l ') .  
Furthermore, /3t~ t cools to its equil ibrium value/3,q = 0.378 fairly rapidly,  
after abou t  N double-flips, while the magnet iza t ion attains Moq = 0 only 
after  10N double-flips. Such findings suppor t  again the hypothesis  o f  thermo-  
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S~ 5-D 
-]11 

ENTROPY 
PRODUCTION 

" " Seq§ 
Xeq 
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/ 3 i n t  
0 . 4  x ~, . . . .  - 
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0 2 4 6 8 I0 18 20 22 

Number of double flips/N 

Fig. 4. Same as Figs. 1 and 3, but for the most irreversible demagnetization in which X '  
is switched off (put to zero) right from beginning; hence S O - D is nonincreasing. The 
original X * = X ~ is switched on at time 19N. The attendant remagnetization to M ~ and 
reheating to/3mr = 0 are almost immediate; S O - D falls to -0 .2 ,  corresponding to a 
very large entropy production. 

dynamic  equivalents  for  the  process.  The  figure also describes an  a b r u p t  
remague t iza t ion  o f  the lattice,  ob ta ined  by  switching on the or iginal  value o f  
the magnet iz ing  pa rame te r  X s = 0.881 at  t ime  s = 19N. I t  is no ted  tha t  the 

rees tabl i shment  o f  the  init ial  magne t i za t ion  M ~ and  the a t t endan t  heat ing to 
13int = 0 are a lmos t  ins tantaneous .  This  is to  be expected since the ad iaba t i c  
magne t i za t ion  des t roys  the  in ternal  o rde r  which was es tabl ished before  by  
the demagnet iza t ion .  The  d i sc r imina t ion  o f  the a b r u p t  magne t i za t ion  is very 
large,  Dmag = 0.62 ( ~  X O M  ~ and  its en t ropy  p roduc t i on  is [Eq. (17)] 

= --ASae,~ag + Dm~g = 0.56 (28) 

This  is much  larger  than  the  en t ropy  p roduc t i on  o f  the  demagne t iza t ion  
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[Eq. (27)] and seems to agree with the observation just made regarding the 
relative rate of  the two processes. The entropy product ion for the entire 
cycle q~ = D r ~  = 0.62 is indicated in the figure; it is obtained by adding 
Eqs. (27) and (28). 

In conclusion, it may  be said that the measurement of  the discrimination 
for a model adiabatic process with no external work permits its entropy 
product ion to be evaluated without  a priori recourse to thermodynamic  
equivalents. The results obtained lend a posteriori support  to the use of  such 
equivalents, even when the irreversibility of  the process is quite pronounced.  
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